反常霍尔效应及其应用

反常霍尔效应及其应用 反常霍尔效应原理?

反常霍尔效应原理?

反常霍尔效应原理?

外加垂直磁场,可激发半导体的霍尔效应。若赋予强磁场则获得显著霍尔效应,此称反常霍尔效应。

若通过掺杂工艺调整半导体的电子能带结构,赋予超低温超导条件,产生所谓的自发磁场,可显著降低霍尔电阻而改善微电子电路的浪涌或热损弊端。

所谓的量子霍尔效应,只是一种说法。本来,只要电子载流子在运动,就必然会激发霍尔磁场中的场介质产生光量子,作为传递电磁作用力的载体,即“电磁信号交换的工质”。简言之,光量子=工质,普通霍尔效应也是如此。

如果试图利用“1个光量子”的n个态函数作为量子计算的“n个信息单元”,这是徒劳的。

理由是:某光量子的态函数是唯一确定的,虽然,可用n个特征变量(如角动量、波长、频率、矢径)异曲同工来表示“唯1个独立态”。但是,这些特征变量不存在叠加态,即,不存在“n个独立态”。

这与电子计算机用“0amp1”或“断amp通”的两个“独立态”作为信息单元,是截然不同的。

可这样类比。假设,潘金莲的独立态是一个光量子的态函数,潘金莲的特征变量:a基因序列、b指纹特征、c人脸标识,可以分别等效代换代表潘金莲的独立态,abc既不是三个独立态,也不存在叠加的独立态。

总之,不管清华大学专家们发明了什么量子反常霍尔元件,想改善电子计算机的电路环境,没毛病。但是想要搞量子计算机,不可能。

什么叫自旋霍尔效应和反常霍尔效应?

1:“量子自旋霍尔效应”是指找到了电子自转方向与电流方向之间的规律,利用这个规律可以使电子以新的姿势非常有序地“舞蹈”,从而使能量耗散很低。

在特定的量子阱中,在无外磁场的条件下(即保持时间反演对称性的条件下),特定材料制成的绝缘体的表面会产生特殊的边缘态,使得该绝缘体的边缘可以导电,并且这种边缘态电流的方向与电子的自旋方向完全相关,即量子自旋霍尔效应

2:量子反常霍尔效应不同于量子霍尔效应,它不依赖于强磁场而由材料本身的自发磁化产生。在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于2013年3月14日在线发表这一研究成果。

(1、量子反常霍尔效应使得在零磁场的条件下应用量子霍尔效应成为可能;

2、这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。)